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Abstract 

An attempt has been made to deduce the condition 
necessary for diffraction enhancement of symmetry to 
occur in the diffraction pattern of a structure X, and 
because the symmetry of the diffraction pattern of X 
coincides with that of its vector set V, the symmetric 
feature of X derived from the symmetry of V was 
studied. The symmetry with the point group G z or 
Gv/G,,, according as X is inversion-symmetric or not, is 
defined as the vector symmetry of X, where G V is the 
point group of V and G, is the inversion group, and 
when the vector symmetry of X is C n, for example, X is 
specified as C,-vector-symmetric. When X is homo- 
metric with itself by a rotation of 2z#n, it is specified as 
n-fold self-homometric. X being n-fold self-homo- 
metric is the necessary and sufficient condition for X to 
be n-fold vector-symmetric. Also, X exhibits an 
enhanced vector (diffraction) symmetry if it is a space- 
groupoid structure with the kernel whose point-group 
symmetry is, other than by addition of an inversion, 
higher than the point-group symmetry of X. Four 
examples of enhanced vector symmetry are examined. 

1. Introduction 

In the field of X-ray crystallography, it had long been 
believed that the point group G D of the X-ray 
diffraction pattern D of a crystal structure X with a 
point group G x is always isomorphic with either G x 
when X is inversion-symmetric, or G x x Gz when X is 
not inversion-symmetric and Friedel's law holds, where 
G I is the inversion group and Gx x G I the direct 
product of G x with Gz. However, Ramsdell & Kohn 
(1951) discovered that the trigonal polytype 10H of 
SiC exhibits a diffraction pattern which is strictly 
hexagonal, and Ross, Takeda & Wones (1966) found 
that the symmetry of the X-ray diffraction pattern of 
the triclinic modification 10Tc 3 of mica is strictly 
monoclinic. Sadanaga & Takeda (1968) then 
theoretically dealt with the latter example, confirmed 
that under certain conditions the point group G D of the 
diffraction pattern D can be monoclinic when the point 
group G x of the structure X is triclinic, and proposed 
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the term 'diffraction enhancement of symmetry' for the 
cases in which the symmetry of the diffraction pattern 
of a crystal becomes higher than the point-group 
symmetry of the crystal, other than as a result of 
Friedel's law. 

Examples, both experimental and theoretical, of 
diffraction enhancement of symmetry have since been 
provided by Marumo & Saito (1972), Iwasaki (1972, 
1974a,b, 1975), Ohsumi, Okamura & Sadanaga 
(1972), Sadanaga, Ohsumi & Matsumoto (1973a,b), 
Matsumoto, Kihara & Iwasaki (1974), Sadanaga & 
Ohsumi (1975), Matsumoto (1975), and Perez-Mato & 
Iglesias (1977). However, all these investigations were 
based upon structural models that produce enhanced 
diffraction symmetries, and accordingly dealt with only 
those conditions sufficient for the diffraction symmetry 
to be enhanced. In expectation of a better under- 
standing of the nature of the phenomenon, therefore, we 
have been engaged in the search for the conditions 
necessary for the enhancement to occur, and now 
present the results of our study. 

2. Basic assumption and concepts 

Though some interesting types of diffraction enhance- 
ment of symmetry have been reported for structures 
with points of more than one kind of weight, such as 
that described by Iwasaki (1974a) and those referred to 
in the last section of the present paper, we assume in 
this paper that all the points in the structure X under 
examination are of equal weight. This is because the 
introduction of a variety of weight to the points in X 
will create an almost insurmountable difficulty in the 
derivation of conditions necessary for the enhance- 
ment to occur; the conclusions based upon this 
assumption prove to be sufficiently significant. As a 
result of this assumption Friedel's law will always hold 
in the diffraction pattern D of X. 

If all the vectors in a structure X are shifted in 
parallel so that each may make each of its end points 
coincide with the origin O of a three-dimensional space, 
the well-known vector set V of X will be obtained. 
Because of the assumption that all the points in X are 
of equal weight, the vector set V is inversion-symmetric, 
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which corresponds to Friedel's law in D. The symmetry 
of the diffraction pattern D of the structure X can then 
be proved to coincide with the symmetry of its vector 
set V (Ohsumi, Koyama & Tamada, 1977). Therefore, 
we shall henceforward replace the diffraction pattern 
with the corresponding vector set, and try to deduce the 
symmetric feature of a crystal from the symmetry 
assumed for its vector set. 

In the kinds of structure we consider in this paper, 
three types of operation will appear for the super- 
position of a configuration of points upon itself or 
another. The first is a symmetry operation which is 
effective everywhere in a crystal space and is called a 
global operation. It is an ordinary space-group 
operation which brings the entire structure X to 
superpose upon itself. The second is a symmetry 
operation called a local operation which is effective 
only within a certain subspace of a crystal space and 
brings the subspace to superpose upon itself. The third 
type of operation will be specified as partial. It operates 
only on a subspace A of a crystal space to bring it to 
superposition upon another B and is accordingly not a 
symmetry operation. The most general form of the 
partial operation is either a partial screw or a partial 
rotatory inversion. 

When a structure X consists of a finite number of 
substructures in such local symmetries as with space 
groups isomorphic with each other, the set of all 
operations, each of which brings each of the sub- 
structures to superpose upon itself or another, forms a 
groupoid defined by Brandt (1926) and introduced into 
crystallography by Dornberger-Schiff (1957). We call 
the structure X specified above a space-groupoid 
structure, a planar and finitely extended model of it 
being illustrated in Fig. 1. A space groupoid consists of 
two classes of operations of superposition: one class is 
composed of local symmetry operations, each bringing 
each of the substructures to superpose upon itself, and 
the other is composed of operations, each bringing each 
of the substructures to superpose upon another. A 
complete set of local symmetry operations which bring 
one of the substructures to superpose upon itself 
obviously constitutes a group. According to Loewy 
(1927), we shall call this group K 0 the kernel of the 
groupoid, and the set H of all the operations of the 
second class the hull of the groupoid, in which partial 
operations are necessarily contained. The groupoid M 
can be decomposed (Loewy, 1927) as 

M =  Ko U Ko hi U Ko h2 U"" U Ko h i U ' "U K o h, 

U h~ -I Ko U h~ -1 Ko hi U h~ "l ~'o h2 U"" U hi "1 Ko h i U-'- U hi -1 Ko h, 

U h~ -1 Ko U h~ -l Ko hi U h~ -l Ko h2 U ' "  U h~ -1 Ko h i U"" U h~ -1 Ko h, 

i i i i ! 

U h, vl K0 U hi -t Ko h I U hi -l K0 h2 U-" U hi -l K0 h i (J"" [J hi -l K0 h. 

i ! ! ! 

U h~ -~ Ko U h~ -t Ko h~ U h~ I Ko h2 U ' "U b~ 1 Ko hi U ' "U h~ ~ Ko h.. (1) 

In (1), h i indicates an element of the hull which brings 
the ith substructure X i to superpose upon the sub- 
structure X 0 representing the kernel K 0. Since each of 
the elements of K o brings X 0 to superpose upon itself, 
K 0 h i expresses the set of all the elements in the hull, 
each of which brings X i to superpose upon X 0, and 
hT~ K 0 h i the set of all the elements in the hull, each of 
which brings Xi to superpose upon Xj. Hence, the 
union of all the off-diagonal terms in (1) constitutes the 
hull H. The diagonal term h71K0h i brings X i to 
superpose upon itself and is a group isomorphic with 
the kernel K o. 

Because the relation between subspaces A and B is 
left indeterminate in the definition of the partial 
operation, this operation is adapted for a far wider 
scope of application than those of the global and local 
symmetry operations. As long as the isomorphism is 
maintained among the space groups of the sub- 
structures in a space-groupoid structure X, a certain 
part of X can be transformed independently from the 

Fig. 1. Plane-groupoid structure of  finite extension and composed 
of  substructures in the form of  an equilateral triangle. The sub- 
structures represent the kernel K 0 and groups isomorphic with K 0. 
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Fig. 2. Conversion of  C 4 into C4 by a partial inversion. The partial 

inversion Ip is combined only with the first and third powers of  
the rotation C4; I, at O operates only along_BB' and DD' ,  OA 
being the starting position. C°(OA) - OA = ~4(OA), Iv.O](OA) = 
OB' = CI(OA), C~(OA) = OC = O~(OA) and Ip. C~(OA) = OD' 
= ~ ( O A ) .  
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other parts in X by a partial operation in H. The partial 
operation is thus capable of converting the rotational 
part of a space group from a pure rotation to a rotatory 
inversion as illustrated in Fig. 2, and can also involve a 
similarity transformation or a change of the weight of 
points, or both, as demonstrated in the last section of 
this paper. 

3. Vector symmetry 

When we try to deduce the structure X from its vector 
set V, we must pick up one vector for X from each pair 
of  vectors inversion-symmetrically related to each other 
in V. This procedure can be expressed by a 2:1 
mapping ~0 of V onto its subset W as 

(p: V --. W, (W c V). (2) 

The role of this subset W lies in mediating between the 
symmetry of the vector set V and that of the structure 
X. 

Let us first suppose that X is not inversion- 
symmetric and the point group G v of V contains an n- 
fold rotation group C, as its only rotational subgroup. 
Denote by R a matrix representing a rotation by 2rc/n 
around the n-fold axis N in V. Since V is inversion- 
symmetric as assumed in the previous section, a G v 
orbit for a vector a in a general direction in V consists 
of a pair of C, orbits of single weight: one formed by 
n vectors, a, Ra, R 2 a, ..., R n- 1 a, and the other by the 
inversion images of these n vectors. However, when n is 
even and a lies in a plane that is perpendicular to the 
axis N and passes the origin O, a G v orbit of single 
weight in the form of a C n orbit can be formed by n 
vectors: a, Ra, R 2 a, ..., R (n/2)-I a for example, together 
with their inversion images. The G v orbits of an n-fold 
rotation group in V are therefore partitioned into two 
classes: one formed by 2n vectors, and the other by n 
vectors. The former orbits will be called paired orbits 
and the latter lone orbits. 

Next, when X is inversion-symmetric, a G v orbit is 
defined as a paired orbit if it consists of a pair of C, 
orbits of double weight. A G v orbit can become exactly 
the same lone orbit as described in the preceding 
paragraph, such as an orbit formed by two vectors 
which in X are the diagonals of a square perpendicular 
to the fourfold rotation axis in a 4/m symmetric 
configuration. A G v orbit for a vector in a general 
direction may also be a lone orbit if it consists of a pair 
of C, orbits of single weight, such as an orbit formed by 
three vectors which cross one another at the inversion 
point in a 3 symmetric configuration. However, since 
this type of lone orbit will not be required for the 
discussion to follow, the term 'lone orbit' should be 
understood, throughout the rest of this paper, to mean 
the lone orbit of the former type only. 

Thus, the mapping of ~0 in (2) can always be so 
chosen as for the point group of the image Pw in W of a 

paired orbit Pv in V to become C,h (n, even) or _C,, i (n, 
odd) when X is inversion-symmetric, or C,, or C,* (n, 
even) or C, (n, odd) when X is not inversion- 
symmetric; the symmetry of Pw can in any case be 
described by an ordinary point group. On the other 
hand, since a lone orbit L v in V is a C, orbit, the 
symmetry of its image k w in W by O) requires special 
consideration as will be shown below with the example 
of C4. Because L w is obviously a plane configuration, 
we may re-write 61 as C 2. Then, in the coset 
decomposition of Ca, 

C4 = EC2 U RC2, (3) 

where E is the unit matrix and R is the matrix of 
rotation by zc/2. Because one vector of the pair of 
inversion-symmetrically related vectors in each lone 
orbit L v in V has been removed from W, the operations 
of superposition of L w in W now consist of only the 
representatives {E,R} of the decomposition in (3). 
However, the representatives will not form a group 
under the law of composition defined for C4, because 
the set contains none of R 2 and R 3. On the other hand, 
since 

R" - E (mod C2) for even integral n 
and ) (4) 

R" - R (mod C2) for odd integral n 

hold, {E,R} forms a group denoted by 124 (mod C2) 
under the law of composition defined by (4). Then, C 4 is 
expressed as 

04 = C 4 (mod C2)o Cz, (5) 

and the product in (5) is called the conditional product 
of C_ 4 (mod C z) with C z (Shubnikov & Koptsik, 1972). 
Hence, in the case of C 4, the group of operations of 
superposition of the image L w in W of a lone orbit L v in 
V is C 4 (rood Cz), and the orbit in W consists of two 
vectors equal in length and perpendicular in direction to 
each other. 

As pointed out in the above paragraph, when the 
image Pw of a paired orbit Pv is taken to be as fully 
symmetric as possible, its point group will become 
identical with G v when X is inversion-symmetric, but 
two alternatives are open when X is not inversion- 
symmetric and n is even, namely C, or C,. However, 
either of these can be equally expressed as Gv/G 1. 
Therefore, in order to specify the orientational relation 
between vectors in X which corresponds to the 
symmetry of V, the symmetry with the point group G v 
or Gv/G I will be called the vector symmetry of X 
according as X is inversion-symn'~etric or not. When 
the vector symmetry of X is C,, for example, X will be 
specified as C,-vector-symmetric. Those vectors in X 
which belong to an orbit of the point group of the 
vector symmetry of X will be said to be vector- 
symmetric with each other. Therefore, in a C4-vector- 

* The n-fold rotatory inversion is denoted by 1~, in this paper. 
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symmetric structure X, a set of vectors vector- 
symmetric with a vector in a general direction will 
consist of four vectors which are arranged, when trans- 
ferred into W, according to the symmetry of either 124 
or C'4, but a set of vectors vector-symmetric with a 
vector in X which is perpendicular to the fourfold rota- 
tion axis in V will consist of either four vectors arranged 
in C 4 in W or two vectors in C 4 (mod C4) in W ac- 
cording as the corresponding orbit in V is paired or 
lone. If the point group G x of X is known and the 
vector symmetry of X is not enhanced, it will be 
appropriate to take Gv/G z of the vector symmetry to be 
identical with G x. The case in which the vector 
symmetry is enhanced (i.e. Gv/G z > G x) is referred to 
in the next section. 

It will be obvious from the relation between X and W 
that the lattice in X is congruent with that found in W. 
Therefore, when X is C,- or Cn-vector-symmetric, the 
lattice in W is n-fold rotation-symmetric. This means 
that the C,- or C,-vector-symmetric structure X has a 
lattice metrically n-fold rotation-symmetric; a C 4- 
vector-symmetric X, for example, has a metrically 
tetragonal lattice, though the global symmetry of X 
may or may not be tetragonal. Thus, the crystal lattice 
is vector-symmetric; all the lattice-translation vectors in 
X necessarily form a class of vector-symmetric sets of 
vectors and are therefore vector-symmetrically self- 
contained. Hence, when we examine the vector sym- 
metry of X, we shall always be concerned with only the 
vector symmetry of those position vectors from a 
lattice point taken as the origin 0 of X to the remaining 
points in a unit cell. 

Then, let us suppose that all the vectors in W are 
shifted in parallel so as to reconstruct X. Parallel shifts 
preserve the angles between vectors but do not 
necessarily preserve the relative positions of vectors. 
Therefore, the model of a C,-vector-symmetric X in its 
most general form will consist of vector-symmetric 

c/ 
OSba 

0 0 s~b 
Sac 

v 
a 

Fig. 3. Plane configuration partly C3-vector-symmetric with respect 
to three vectors a, b and e. Sj~ indicates the axis of a partial 
rotation by 2rc/3 that brings vector i to superpose upon vector j. 

vectors distributed asymmetrically over X, where one 
of the vectors, a, is brought to superposition upon 
another, b, vector-symmetric with a, by a partial screw 
or a partial rotatory inversion around an axis N x, 
which is parallel to the n-fold rotation axis N in V when 
X and V are placed in parallel as usual, and whose 
position (and pitch as well when it is a screw) will be 
determined by the positions and orientations of a and b. 
The angle of rotation around this axis N x is equal to 
one of the n-fold rotation angles. In this model of X, 
every pair of vector-symmetric vectors is associated 
with a partial screw or a partial rotatory inversion 
which is considered to belong exclusively to this pair of 
vectors. This situation is illustrated in Fig. 3 with a 
finite two-dimensional configuration which is partly t23 - 
vector-symmetric only with respect to three vectors a, b 
and c. 

4. Selfohomometry, symmetry and basic theorems of 
vector symmetry 

Suppose that between two configurations A and B there 
exists a 1 • 1 correspondence of A to B which maps each 
of the inter-point vectors in A onto a vector in B, say a i 
o n t o  bi,  where a i is equal to  b i in absolute value, lail = 
Lbil. Then, of each of the pairs of vectors, (al,bl), 
(a2,b2), ..., (as,bs) . . . .  , in which a i E  A, b i E  B and 
latL = Ibtl for i = 1, 2 . . . . .  s . . . . .  a partial operation 
which brings one of a pair of vectors, say a~, to super- 
pose upon the other, b t, will be conceivable. Denote this 
partial operation by Sr If all the Si's for A and B are 
operations around axes parallel to each other and with 
the same rotation angle, A and B will be homometric 
with each other. Further, if in a pair of homometric 
configurations A and B all the Si's coincide with each 
other, A and B will then become congruent or enantio- 
morphic; that is, isometric with each other. Hence, 
isometry can be looked upon as a special case of 
homometry in which all the partial operations of the 
latter coalesce into a single operation. 

Let us assume that the structure X is homometric 
with itself in such a way that both A and B, which are 
homometric with each other, come to coincide with 
each other and with X. The structure X will then be 
said to be self-homometric. When X is n-fold self- 
homometric, its vector set V will be n-fold symmetric, 
and X will be n-fold vector-symmetric. Thus, X being 
n-fold self-homometric is the condition sufficient for X 
to be n-fold vector-symmetric. Conversely, when V is n- 
fold symmetric, it will be superposed upon itself by a 
rotation of 2n/n around its n-fold rotation axis N. This 
means that X consists of vectors which correspond 
one-to-one in both equality in length and parallelism in 
direction to the vectors in X after a rotation by 2x/n 
around an axis parallel to N in V; that is, X is n-fold 
self-homometric. Hence, the following theorem will 
hold. 
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Theorem 1 (first basic theorem of vector symmetry): 
The necessary and sufficient condition for a structure X 
to be n-fold vector-symmetric is that X is n-fold self- 
homometric. 

Next, let us examine the relation between vector 
symmetry and symmetry. The concept of self- 

. homometry includes those of global and local sym- 
metries. If these symmetries are excluded from self- 
homometry, the remainder will be called proper self- 
homometry. If a vector-symmetric structure X contains 
at least one such point so that every position vector 
from it has its vector-symmetric counterparts only by 
dint of proper self-homometry, X will be called a 
properly self-homometric structure. Because theorem 1 
expresses the final conclusion expected from a properly 
self-homometric structure, in order to see if it is possible 
to draw any other conclusion more concrete than the 
theorem, it will be assumed below that the structure X 
is not properly self-homometric; that is, every point in 
X possesses among the position vectors from it at least 
one such vector that is given its vector-symmetric 
counterparts by symmetry operations. Then, each of 
the points in X must belong to an orbit of a space group 
whose point group is isomorphic with the point group 
of the vector symmetry of X; that is, G v or Gv/G~ 
according as X is inversion-symmetric or not. We thus 
arrive at the following theorem. 

Theorem 2 (second basic theorem of vector sym- 
metry): When a structure X is not properly self- 
homometric, the necessary condition for X to be 
vector-symmetric is that each of the points in X belongs 
to an orbit of such a space group K i as with a point 
group isomorphic with the point group of the vector 
symmetry of X. 

In this theorem, the symmetry which the space group 
K i represents is either global or local. 

A space group G s is an extension of a lattice- 
translation group G t by a point group Gp; that is, 
G o ""  Gs/G t. Therefore, when G~, ~- G'/G;, G~ ~ Gp and 
G; _~ G t, G' is isomorphic with G s, G' s _~ G~. Theorem 2 
asserts that when X is vector-symmetric, all the point 
groups of the space groups associated with the sub- 
structures are isomorphic with each other. Therefore, if 
the lattice-translation groups of the space groups are 
also isomorphic with each other, the space groups will 
become isomorphic with each other, and the structure 
X will then be regarded as a space-groupoid structure. 
The isomorphism of lattice-translation groups in this 
case reduces to the matter of equal multiplicity of the 
lattices. When the space group Kj of the substructure 
Xj, for example, is based upon a multiple lattice, say p- 
ply centred, Xj can then be decomposed into p 
components, each with a simple lattice. When X is 
partitioned in this way into such substructures, each 
with a simple lattice, the space groups associated with 
these substructures will then be isomorphic with each 
other, and X will become a space-groupoid structure, in 

which the p-centring translations in Kj, for example, 
have since acquired their proper places in the hull of the 
space groupoid. This space-groupoid structure includes 
an ordinary space-group structure as its special case in 
which the kernel K o comes to occupy the entire space 
groupoid. The following corollary will thus hold. 

Corollary 1: The necessary condition for a structure 
X, which is not properly self-homometric, to exhibit an 
enhanced vector symmetry (enhanced diffraction sym- 
metry) is that X is a space-groupoid structure with the 
kernel whose point-group symmetry is, other than by 
addition of an inversion, higher than the point-group 
symmetry of X. 

If the point groups of the space groups associated 
with the substructures are not only isomorphic but also 
identical with each other, the vector symmetry of X 
may be specified by this common point group as will be 
done in the next section. It should be pointed out that 
the point groups of the space groups may not all be 
identical with each other, some of them being pure 
rotations while the rest are rotatory inversions. Even in 
this case, however, the corresponding space groups can 
coexist in the space groupoid provided such a partial 
inversion as illustrated in Fig. 2 is present in the hull. 

Comprehensive lists of sufficient conditions for 
structures to exhibit enhanced vector symmetry have 
been published by Iwasaki (1972), Matsumoto, Kihara 
& Iwasaki (1974) and Perez-Mato & Iglesias (1977). 

5. Examples 

We will now illustrate the above theorems and corollary 
with four examples of enhanced vector symmetry. 

(A ) Enhancement due to proper self-homometry 

The plane configuration shown in Fig. 4(a) repre- 
sents the unit-cell content of a structure in which all the 
points, black and white, are of equal weight. When this 
configuration and those congruent with it are arranged 
according to a square lattice with a translation period 
of arbitrary length, a two-dimensional structure with C4 
vector symmetry will be completed. The corresponding 
three-dimensional structure can be constructed by 
stacking the same plane structures together, one 
immediately above another. For the sake of simplicity, 
however, we shall deal here with this plane con- 
figuration denoted by A* B. 

This A*B has been derived by the convolution of a 
plane sub-configuration A with another B as shown in 
Fig. 4(b), where B is homometric with A and so placed 
that one of its vectors b i may be perpendicular to its 
homometric mate ai in A. The actual procedure of the 
convolution is as follows. Take any one of the points in 
B and denote it by PB. Move B in parallel so that PB 
may range over all the points in A. Whenever PB meets 
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a point in A, register the positions of all the points in B 
at this instance. Then, when P8 has completed its travel 
around all the points in A, the union of all the registered 
sub-configurations will give the result of the con- 
volution of A with B; that is, A*B. The fact that A*B is 
fourfold self-homometric can be visualized as follows. 

As an arbitrarily chosen vector in A,B,  take PEP3 
between P2 in Ag and P3 in B h in Fig. 5. It will then be 
possible to assume that P4P5 is a unique vector in 
A which is equal in length and perpendicular in 
direction to P1P3 in B h. This means that Bj and B t form 
a unique pair of sub-configurations for which the vector 
from a point in Bj to the corresponding point in B l is 
always equal in length and parallel in direction to P4 Ps- 
P6 P7 and P8 P9 are  unique vectors respectively in Bj and 
in B l which are equal in length and perpendicular in 
direction to PIP2 in A r Since both P6P8 and PTP9 are 
equal in length and parallel in direction to P4 P5, P6 P9 is 
a unique vector which is equal in length and perpen- 
dicular in direction to P2P3; P6P9 is the fourfold self- 
homometric mate of P2P3 . Hence, A*B forms a four- 
fold self-homometric configuration of finite extension. 

It will then be obvious that when A*B and those 
congruent with it are arranged according to a square 

P 

(a) 

(b) 

Fig. 4. Properly self-homometric plane structure with the global 
symmetry of p l and the vector symmetry of 4. (a) Unit-cell 
content, A*B. No p4 orbit is associated with any of the white 
points. (b) Two sub-configurations A and B used for the 
derivation of A*B. These sub-configurations are homometric 
with each other, and a vector ag in A and its homometric mate bg 
in B are perpendicular to each other to form a lone orbit of the C 4 
vector symmetry. 

lattice the resulting plane structure is fourfold self- 
homometric. This structure is 4 in its vector symmetry 
by theorem 1 while p 1 in its global symmetry. It is to be 
noted that no p4 orbit is associated with any one of the 
white points in Fig. 4(a); the presence of such points is 
characteristic of the enhancement due to proper self- 
homometry. No actual example of this type of enhance- 
ment has yet been discovered. 

(B) Enhancement due to local symmetry 

Although some actual examples of this type of 
enhancement are known and more cases are expected 
among polytypes of mica, SiC, ZnS etc., only fictitious 
models are chosen here to take advantage of their 
simple structures. 

One of the typical examples will be the C2-vector- 
symmetric structure given by Iwasaki (1972). The 
simplest model of this type contains nine points in the 
unit cell of a metrically monoclinic lattice as shown in 
Fig. 6 in a projection along the b axis. The black circles 
in the figure lie in a plane parallel to the plane of the 
paper, and the white ones lie in another plane of the 
same description. Both kinds of circle may differ from 
each other in weight. Two white circles are located 
twofold rotation-symmetrically around an axis perpen- 
dicular to the plane of the paper and passing the black 
circle in the middle, and these three circles form a unit 
of this structure. Three such structural units are 
arranged in parallel with each other in a unit cell. This 
structure is P1 in its global symmetry but 2 in its vector 
symmetry. One of the structural units arbitrarily 
chosen and those lattice-translationally equivalent to it 
represent the kernel P2 of the space groupoid of this 
structure. 

Fig. 5. Lone orbit of C 4 vector symmetry in A*B in Fig. 4(a). A t is 
congruent with and parallel to A, and B h, Bj and B z are congruent 
with and parallel to B. Points belong to sub-configurations as: 
Pl, P2 E Ai; Pl, P3 C B h, P4, P5 E A; P6, P7 E Bj; P8, P9 C B I. 
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The next example is shown in Fig. 7, in which OA CB 
indicates a square unit cell of a plane structure and all 
the points are of equal weight. Because every point in 
this structure X obviously lies in a tetragonal orbit, it is 
possible (theorem 2) for X to be Ca-vector-symmetric. 
In fact, it is Ca-vector-symmetric while its global 
symmetry is p l. One of the squares arbitrarily chosen 
in Fig. 7 and those lattice-translationally equivalent to it 
constitute the substructure representing the kernel pa.  
Consider the element h i of the hull which brings X i to 
superpose upon X 0. This element must contain a 
partial translation t i which brings the plane lattice L i 
composed of the centres of the squares in X i to super- 
pose upon the corresponding lattice L 0 in X o. Because 
the squares in X i differ from those in X 0 in both 
orientation and size, h i must also contain a set R i = 
UjTjriTf 1, where r i is a partial rotation operating on 
the square around the origin of Li to line it up in parallel 
with the squares in X o, Tj is a lattice translation from 
the origin of L i t o  the j th  lattice point in L i, and the 
union ranges over all the lattice points in L i ,  and a set 
U i = UjTjuiT] -~, where u i is a similarity transformation 

0 

• 0 
0 • 

0 0 

0 

Fig. 6. C2-vector-symmetric space-groupoid structure. The paral- 
lelogram indicates a unit cell projected along the b axis of a 
metrically monoclinic lattice. This structure is PI in its global 
symmetry and 2 in its vector symmetry. 

operating on the above square to make it the same 
size as the squares in X 0. The element h i will thus be 
expressed a s  h i = U i. R i. ti, where U i, R i and t i commute 
with each other. 

Finally, let us take one example from Iwasaki 's  
(1972) type 3 and consider the case in Fig. 8 in which a 
tetragonal structure X is composed of two sub- 
structures, one with the symmetry of P42cm and 
consisting of small circles in the figure, and the other 
with P42mc and consisting of large circles. Though each 
of these substructures must be composed of points of 
equal weight, the weight of points in one of them may 
differ from that in the other. This structure is P42 in its 
global symmetry but 4ram in its vector symmetry.  
Though the space group P42crn of the first sub- 
structure differs from P42mc of the second, these are 
still isomorphic with each other. Hence, either of these 
two space groups may be taken as the kernel of the 
space groupoid of this structure. The element h 1 of the 
hull contains, besides a bodily shift of X 1 so as to make 
z = z', component operations similar to R i and U i in 
the previous example, and also a change in the weight 
of points if the weight in one of the substructures differs 
from that in the other. 

We wish to express our sincere gratitude to Professor 
T. Ito MJA,  for his interest and encouragement 
throughout the course of this study. One of us (RS) 
wishes to take this opportunity to express his warmest  
thanks to Professor K. Dornberger-Schiff for her kind 
introduction to the theory of groupoids and its 
application to crystallography personally given to him 
about twenty years ago, and to Professor V. A. Koptsik 
for kindly supplying him with a copy of his wonderful 

o 

Fig. 7. Ca-vector-symmetric plane-groupoid structure. OACB indi- 
cates a unit cell. This structure is p I in its global symmetry and 4 
in its vector symmetry. 

o 0 • o 0 • 

• i - -o  e - -  1 • 
• • 0 0 

' ~Oz 

0 z i + 
O ' Oz' 
• O 0 Oz+~. ½ 

--A Fig. 8. Space-groupoid structure with the global symmetry of P4 2 
and the vector symmetry of 4mm. The square indicates a unit 
cell, and the heights of points are given around the lower right- 
hand corner. The coordinates of points in the f/actions of the cell 
edges in the plane of projection are either zorz.~ 3 
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book Symmetry in Science and Art, thus greatly 
facilitating the present work. 
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Abstract 

The limited 'window' in reciprocal space through 
which it is possible to observe diffraction phenomena 
sets a reciprocal limit to the resolution of detail in 
density distributions. The limit of resolution depends on 
whether the detail is one-, two-, or three-dimensional, 
and to some extent it is possible to choose between (i) 
lack of resolution associated with a large central maxi- 
mum representing a point-object and (ii) false details 
associated with a smaller central maximum and more 
pronounced diffraction troughs. In any case, however, 
the limit of resolution is about one-quarter to one-half 
of the wavelength of the radiation used. Intensities 
measured by photon or particle counting are unbiased 
estimates of the true intensities, but their square roots 
are not unbiased estimates of the structure factors, and 
this bias may carry over into parameters based on 
structure factors rather than intensities. A satisfactory 
correction can be made for the strong reflexions, but 
weak reflexions (which are required if the theoretical 
limit of resolution is to be reached) remain a problem. 

I. Introduction 

1.1. The positional parameters of atoms in crystals can 
be determined with considerable accuracy, and in 
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general they are remarkably little affected by system- 
atic errors and statistical fluctuations (Wilson, 1976b, 
1977a,b). The scaling factor and the thermal 
parameters, on the other hand, are sensitive to 
systematic errors and are biased by statistical fluctu- 
ations unless special precautions are taken (Wilson, 
1975, 1976b, 1977a,b, 1978b; Lomer & Wilson, 1975). 
The measurement of the distribution of electron density 
is even more sensitive to systematic errors and statis- 
tical bias, and there is a fundamental limitation of 
resolving power: only .reflexions with spacings greater 
than 12 can be measured, where ~. is the wavelength of 
the radiation employed, and sometimes the geometrical 
design of the apparatus imposes a higher limit 
2/2 sin 0max, where 0ma x is the largest Bragg angle that 
can be attained. One cannot expect, therefore, to be 
able to resolve details of the charge distribution on a 
scale much less than ½;t. Naturally it is possible to fit 
models to the observed intensities of reflexion that 
imply detail on a smaller scale, but the measurements 
would give no criterion for deciding between rival 
models giving approximately the samegoodness of fit. 
These remarks apply equally, mutatis mutandis, to 
measurements of the distribution of momentum density, 
of spin density, and of atomic-centre distribution in 
imperfect structures, and to diffraction measurements 
with electrons, neutrons etc. as well as to measure- 
ments with X-rays. 
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